Подпишись и читай
самые интересные
статьи первым!

Перечислить элементы режима резания при точении. Определение режимов резания

Парфеньева И.Е. ТЕХНОЛОГИЯ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ. М.: Учебное пособие, 2009

3. Классификация и характеристика движения резания. Режимы резания. Качество обработанной поверхности Параметры процесса резания. Общая характеристика способа точения.

3.1. Классификация и характеристика движения резания

Чтобы с заготовки срезать слой металла, необходимо режущему инструменту и заготовке сообщить относительные движения. Эти относительные движения обеспечиваются рабочими органами станков, в которых заготовка и инструмент устанавливаются и закрепляются.

Движения рабочих органов станков делят на рабочие или движения резания, установочные и вспомогательные.

Рабочие или движения резания – это движения, которые обеспечивают срезание с заготовки слоя металла. К ним относят главное движение резания и движение подачи.

За главное движение резания принимают движение, определяющее скорость деформирования металла и отделения стружки. За движение подачи принимают движение, которое обеспечивает непрерывность врезания режущей кромки инструмента в материал заготовки. Эти движения могут быть непрерывными или прерывистыми, по своему характеру – вращательными, поступательными, возвратно-поступательными. Скорость главного движения обозначают буквой V , скорость движения подачи (величину подачи) - S .

Установочные движения – движения, обеспечивающие взаимное расположение инструмента и заготовки для срезания с нее определенного слоя материала.

Вспомогательные движения – движения рабочих органов станков, не имеющие прямого отношения в процессу резания. Примерами служат: быстрые перемещения рабочих органов, переключение скоростей резания и подач и др.

Для любого процесса резания можно составить схему обработки . На схеме условно обозначают обрабатываемую заготовку, ее установку и закрепление на станке, закрепление и положение инструмента относительно заготовки, а также движения резания. Инструмент показывают в положении, соответствующем окончанию обработки поверхности заготовки. Обработанную поверхность на схеме выделяют утолщенными линиями. Показывают характер движений резания.

На заготовке различают: обрабатываемую поверхность 1, с которой срезается слой металла; обработанную поверхность 3, с которой металл уже срезан; поверхность резания 2, образуемую в процессе обработки главной режущей кромкой инструмента.

Рис.1. Схемы обработки заготовки точением и сверлением

3.2. Режимы резания

Основными элементами режима резания являются: скорость резания V , подача S и глубина резания t . Элементы режима резания рассмотрим на примере токарной обработки.

Рис.2. Элементы режима резания и геометрия срезаемого слоя

Скорость резания V – это расстояние, пройденное точкой режущей кромки инструмента относительно заготовки в направлении главного движения в единицу времени. Скорость резания имеет размерность м/мин или м/сек.

При точении скорость резания равна:

М/ мин

где D заг – наибольший диаметр обрабатываемой поверхности заготовки, мм; n – частота вращения заготовки в минуту.

Подачей S называют путь точки режущей кромки инструмента относительно заготовки в направлении движения подачи за один оборот или один ход заготовки или инструмента.

Подача в зависимости от технологического метода обработки имеет размерность:

мм/об – для точения и сверления;

мм/об, мм/мин, мм/зуб – для фрезерования;

мм/дв.ход – для шлифования и строгания.

По направлению движения различают подачи: продольную S пр , поперечную S п , вертикальную S в , наклонную S н , круговую S кр , тангенциальную S т и др.

Глубиной резания t называют расстояние между обрабатываемой и обработанной поверхностями заготовки, измеренное перпендикулярно последней. Глубину резания относят к одному рабочему ходу инструмента относительно обрабатываемой поверхности. Глубина резания имеет размерность мм. При точении цилиндрической поверхности глубина резания определяется по формуле:

где d –диаметр обработанной цилиндрической поверхности заготовки, мм.

Глубина резания всегда перпендикулярна направлению движения подачи. При подрезании торца глубиной резания является величина срезаемого слоя измеренная перпендикулярно к обработанному торцу. При прорезании и отрезании глубина резания равна ширине канавки, образуемой резцом.

Глубина резания и подача являются технологическими величинами, которыми оперируют в производственных условиях (при нормировании). Для теоретических исследований имеют значение геометрические величины срезаемого слоя: ширина, толщина и площадь срезаемого слоя.

Шириной срезаемого сло я «b » называется расстояние в мм между обрабатываемой и обработанной поверхностями, измеренное по поверхности резания.

где - главный угол в плане.

Толщиной срезаемого слоя «a » называется расстояние в мм между двумя последовательными положениями поверхности резания за один оборот обрабатываемой детали, измеренное перпендикулярно к ширине срезаемого слоя

Площадь срезаемого слоя «f » равна

Мм2 .

Эта площадь сечения срезаемого слоя называется номинальной . Действительная площадь срезаемого слоя будет меньше номинальной за счет гребешков, оставляемых резцом на обработанной поверхности. Высота и форма остающихся гребешков влияет на шероховатость обработанной поверхности.

3.3. Качество обработанной поверхности

Качество обработанной поверхности определяется геометрическими и физическими характеристиками поверхностного слоя. Геометрические характеристики поверхности дают представление о погрешностях механической обработки. К этим погрешностям относятся:

· макрогеометрия поверхности, характеризуемая погрешностями формы, как, например, выпуклостью или вогнутостью плоских поверхностей и конусностью, бочкообразностью, седлообразностью, овальностью и огранкой цилиндрических поверхностей;

  • микрогеометрия поверхности (шероховатость);
  • волнистость.

Физические свойства поверхностного слоя отличаются от физических свойств основного материала. Это объясняется тем, что при обработке резанием поверхностный слой подвергается воздействию высоких температур и значительных сил, которые вызывают упругие и пластические деформации. Толщина деформированного слоя составляет при шлифовании порядка 50000Ао , при полировании 15000Ао (Ао =10-7мм). Таким образом, даже при такой чистовой обработке, как шлифование, поверхностный слой толщиной более 5 мкм отличается от основного металла.

Шероховатость поверхности определяет продолжительность нормальной работы деталей и машин. От степени шероховатости поверхности зависят износостойкость поверхностей трущихся пар, антикоррозионная стойкость деталей машин, стабильность посадок.

Чем грубее обработана деталь, тем меньше ее износостойкость. Наличие микронеровностей вызывает концентрацию напряжений во впадинах гребешков, что приводит к появлению трещин и снижает прочность деталей (особенно работающих при знакопеременных нагрузках).

Шероховатость на деталях после обработки оказывает значительное влияние на коррозионную стойкость. Очаги коррозии образуются в первую очередь во впадинах. Чем чище обработана поверхность, тем выше ее коррозионная стойкость.

Шероховатость оказывает влияние на стабильность подвижных и неподвижных посадок. Значительная шероховатость изменяет расчетную величину зазора или натяга.

Высота неровностей на обработанной поверхности зависит от величины подачи, геометрии резца (радиуса резца при вершине, главного и вспомогательного углов в плане и ). Кроме того, высота неровностей зависит от обрабатываемого материала, скорости резания, нароста, износа резца, вибраций и т.д.

Общая высота неровностей складывается из расчетной (теоретической) части шероховатостей и шероховатостей, возникающих от технологических факторов.

При обработке резцом, для которого радиус при вершине =0, теоретическая высота неровностей равна

где S – подача, мм/об; , - главный и вспомогательный углы в плане, град.

При :

Зависимость приближенная, так как не учитывает влияние технологических факторов. Высота неровностей возрастает с увеличением подачи, а также углов и и уменьшается с увеличением радиуса .

Влияние технологических факторов на шероховатость поверхности:

1.Скорость резания. В диапазоне скоростей резания, где нарост имеет максимальное значение, получается наибольшая шероховатость. Так, для стали средней твердости наибольшая шероховатость поверхности получается в диапазоне 15-30 м/мин.

2.Глубина резания непосредственно не влияет на высоту микронеровностей.

3.Чем выше вязкость обрабатываемого материала, тем больше высота шероховатостей.

4.Применение СОЖ уменьшает размеры неровностей.

На шероховатость обработанной поверхности влияет шероховатость на режущей кромке инструмента. Она копируется и непосредственно переносится на обработанную поверхность.

3.4. Параметры процесса резания

Параметры процесса резания – это переменные, используемые для описания и анализа процесса резания. К ним относят множество размеров обработанной поверхности (линейные, угловые), множество параметров шероховатости; основное время, непосредственно затраченное на резание То , стойкость инструмента Т , эффективную мощность резания, скорость резания, геометрические параметры резцов и т.д.

Основное технологическое время обработки То –это время, затрачиваемое непосредственно на процесс изменения формы, размеров и шероховатости обрабатываемой поверхности заготовки.

Для токарной обработки

где -путь режущего инструмента относительно заготовки в направлении подачи; l –длина обработанной поверхности, мм; –величина врезания () и перебега резца (1–2), мм;

i – число рабочих ходов резца, необходимое для снятия материала, оставленного на обработку;

n – частота вращения заготовки, об/мин;

S – подача, мм/об.to –основное (технологическое) время, затрачиваемое на резание;

t в - вспомогательное время, необходимое для установки и снятия детали, измерения ее, управления станком и др.;

t об - время обслуживания станка и рабочего места, отнесенное к одной детали;

t п - время перерывов на отдых и естественные надобности, отнесенное также к одной детали.

Отдельные составляющие штучного времени определяются по нормативно-справочным данным.

Элементы режима резания назначают следующим образом:

1. сначала выбирают глубину резания. При этом стремятся весь припуск на обработку снять на один проход режущего инструмента. Если по технологическим причинам необходимо сделать два прохода, то при этом на первом проходе снимают 80% припуска, при втором 20%;

2. выбирают величину подачи. Рекомендуют назначать наибольшую допустимую величину подачи, учитывая требования точности и шероховатости обработанной поверхности, а также режущие свойства материала инструмента, мощности станка и другие факторы;

3. определяют скорость резания по эмпирическим формулам. Например, для точения

где СV - коэффициент, зависящий от обрабатываемого и инструментального материалов и условий резания;

Т – стойкость резца в минутах;

m - показатель относительной стойкости;

XV , YV –показатели степеней.

4. по найденной скорости определяется число оборотов шпинделя станка и по паспорту станка выбирается ближайшее меньшее

При обработке заготовки на токарном станке необходимы движения формообразования, т. е. обрабатываемая заготовка и режущий инструмент должны совершать определенные дви­жения. Эти движения подразделяются на основные, служащие для осуществления процесса резания, и вспомогательные, не участвующие непосредственно в процессе резания. Основными являются движения резания (вращение шпинделя станка с закрепленной на нем заготовкой) и подачи (продольное или по­перечное перемещение режущего инструмента, жестко закреп­ленного в резцедержателе станка). Процесс обработки на то­карном станке определяется режимом резания.

Глубина резания t, мм, - толщина стружки, срезаемой за

один проход, измерен­ная в направлении, пер­пендикулярном обраба­тываемой поверхности (рис. 91, а).. При наружном про­дольном точении

где D - диаметр заго­товки, мм; d - диа­метр обработанной по­верхности, мм.

Рис.91.Элементы режима резания при точении

Скорость резания v, м/мин - перемещение в единицу времени про­извольной точки, взя­той на активной части

главной режущей кромки, относительно обрабатываемой поверх­ности заготовки. Так как обрабатываемая поверхность имеет различные диаметры, то скорость резания в различных точках активной части главной режущей кромки является величиной переменной (рис. 91, б). Максимальная скорость

где D - наибольший диаметр, обрабатываемой поверхности, мм; n - частота вращения шпинделя, об/мин.

При продольном точении скорость резания имеет постоянную величину на протяжении всего времени резания. При подрезке торца, когда резец движется от периферии заготовки к центру, скорость резания переменна и равна нулю в центре заготовки.

Подача - перемещение режущей кромки инструмента относи­тельно обработанной поверхности заготовки в единицу времени. При токарной обработке различают оборотную подачу S 0 , мм/об, т. е. перемещение режущей кромки инструмента за один оборот заготовки и минутную подачу S, мм/мин, т. е. перемещение за 1 мин. При этом S = S 0 n.

Значения t, v и S, зависящие от условий обработки, физико-механических характеристик материала заготовки, материала ре­жущей части инструмента, вида обработки и жесткости, приве­дены в справочной литературе.

Методические указания

Для выполнения контрольной работы по дисциплине

«Процессы формообразования и инструмент»

Пермь – 2005

Цель работы: практически овладеть методикой назначения режима резания и расчета машинного времени при токарной обработке.

    Шифр задания , (приложение I).

I, II, III и т. д. – вид операции механической обработки: предварительная продольная обточка стальных или чугунных заготовок, чистовая обточка стальных или чугунных деталей и т. д.

1, 2, 3 и т. д. – номера вариантов задания.

Например, шифр задания I-10 означает, что следует назначить элементы режима резания и рассчитать машинное время при предварительной продольной обточке стальной заготовки при следующих условиях: обрабатываемый материал – сталь хромокремнистая прочностью 980 МПа (прокат горячекатаный), диаметр заготовки D 1 = 148 мм, диаметр обработанной детали D 2 = 140 мм, длина обработанной поверхности L = 400 мм, на поверхности заготовки корка, обработка производится без охлаждения. Резец правый, прямой, проходной, материал режущей части твердый сплав Т5К10, α = 8º, γ = -10º, φ = 30º, φ 1 = 15º, λ = 0º, r В = 1 мм.

Период стойкости Т = 30 мин., допустимый износ по главной задней поверхности h 3 = 1,0 мм.

  1. Оборудование.

Все варианты задания выполняются на токарно-винторезном станке модели 16К20.

Технические характеристики станка:

Высота центров 215 мм

Расстояние между центрами 2000 мм

Мощность электродвигателя

главного движения N ст = 10 кВт

КПД станка η = 0,75

Частоты вращения шпинделя:

12,5; 16; 20; 25; 31,5; 40; 50; 63; 80; 100; 125; 160; 200; 250;315; 400; 500; 630; 800; 1000; 1250; 1600 об/мин.

Продольные подачи: 0,05; 0,06; 0,075; 0,09; 0,10; 0,125; 0,15; 0,175; 0,20; 0,25; 0,30; 0,35; 0,40; 0,50; 0,60; 0,70; 0,80; 1,0; 1,2; 1,4; 1,6; 2,0; 2,4; 2,8 мм/об.

Поперечные подачи: 0,025; 0,03; 0,0375; 0,045; 0,05; 0,0625; 0,075; 0,0875; 0,10; 0,125; 0,15; 0,175; 0,2; 0,25; 0,3; 0,35; 0,40; 0,50; 0,60; 0,70; 0,80; 1,10; 1,20; 1,40 мм/об.

  1. Элементы режима резания при токарной обработке.

К элементам режима резания относятся (рис. 1):

    Скорость резания:

где - диаметр обрабатываемой поверхности детали, мм;

- частота вращения шпинделя станка, об/мин.

При заданной скорости резания частота вращения шпинделя станка определяется по формуле:

(2)

    Подача назначается в мм на один оборот детали S , мм/об.

    Минутная подача: S м = S·n , мм/мин. (3)

    Глубина резания

(4)

Совокупность этих элементов (v, s, t ) называется режимом резания.

  1. Назначение элементов режима резания.

Наивыгоднейшим называется режим резания, обеспечивающий наивысшую производительность процесса при наименьшей его себестоимости. Наивысшая производительность процесса достигается при наибольших значениях глубины резания, подачи и скорости резания. Наименьшая себестоимость достигается при обеспечении экономически обоснованного периода стойкости резца. Эта величина указана в задании.

Задание предусматривает расчет наивыгоднейшего режима резания при токарной обработке. Для других видов механической обработки (сверления, зенкерования, фрезерования и т. д.) используются аналогичные методики. При этом существует единая последовательность, суть которой заключается в следующем: в первую очередь назначаются элементы режима резания наименьшим образом влияющие на период стойкости инструмента – глубина резания и подача.

По этим двум элементам и заданной экономически обоснованной величине периода стойкости рассчитывается скорость резания. По назначенному таким образом режиму резания производятся различные проверочные расчеты. В данной работе предусмотрена проверка по мощности главного привода станка.

Режим резания назначается по формулам и таблицам, приведенным в тексте данных методических указаний и в приложении II.

Ниже приведена последовательность назначения режима резания при токарной обработке.

Рис. 1

1.1. Режимы резания

При назначении элементов режимов резания учитывают характер обработки, тип и размеры инструмента, материал его режущей части, материал и состояние заготовки, тип и состояние оборудования.

Элементы режима резания обычно устанавливают в следующем порядке:

Глубина резания t : при черновой (предварительной обработке) назначают по возможности максимальную t, равную всему припуску на обработку или большей части его; при чистовой (окончательной) обработке – в зависимости от требований точности размеров и шероховатости обработанной поверхности.

Подача S : при черновой обработке выбирают максимально возможную подачу, исходя из жесткости и прочности системы СПИД, мощности привода станка, прочности твердосплавной пластинки и других ограничивающих факторов; при чистовой обработке – в зависимости от требуемой степени точности и шероховатости обработанной поверхности.

Скорость резания V рассчитывают по эмпирическим формулам, установленным для каждого вида обработки.

Стойкость Т – период работы инструмента до затупления, приводимый для различных видов обработки.

Сила резания. Под силой резания обычно подразумевают ее главную составляющую Р z , определяющую расходуемую на резание мощность N e и крутящий момент на шпинделе станка. Силовые зависимости рассчитывают по эмпирическим формулам, значения коэффициентов и показателей степени в которых для различных видов обработки приведены в соответствующих таблицах.

1.2. Определение режимов резания при точении

Определим режимы резания для чернового наружного точения цилиндрической поверхности на токарном станке в следующей последовательности:

1.2.1. Определить глубину резания t , мм:

, (9.1)

где D – диаметр заготовки, мм;

d – диаметр детали, мм;

i – число проходов.

1.2.2. Назначить подачу S , мм/об, в зависимости от вида

обработки, режима обработки (черновой, чистовой),

жесткости системы СПИД и др. факторов, согласно

таблицы 9.1 приложения Д.

Выбирают модель токарного станка, на котором будет выполняться точение, и корректируют значение выбранной подачи S по паспортным данным этого станка.

, (9.2)

где Т – стойкость инструмента, при одноинструментальной

обработке принимают в пределах 30÷60 мин;

С v , m , х, у – коэффициенты, значения которых определяются

по таблице 9.2 приложения Д.

t – глубина резания, мм;

S – подача, мм/об;

К v – поправочный коэффициент, который определяется

по формуле:

, (9.3)

где K mv

заготовки, определяется по таблице 9.3

приложения Д;

K nv – коэффициент, учитывающий состояние поверхности

заготовки:

Для стальной заготовки K nv = 0,9;

Для чугунной заготовки K nv =0,8;

K и v – коэффициент, учитывающий влияние материала

инструмента, определяется по таблице 9.5

Под режимом резания подразуме­вается совокупность глубины резания, подачи, скорости резания и стойкости инструмента.

Элементы режима резания уста­навливаются в такой последователь­ности: сначала определяется макси­мально возможная глубина резания (допустимая технологией обработки); по выбранной глубине определяется максимальная величина подачи (допу­стимая технологией обработки); по выбранной глубине и подаче, задав­шись определенным периодом стойко­сти инструмента, находят допустимую скорость резания. Затем производится проверка выбранных элементов режи­ма резания. Подачу контролируют по прочности механизмов станка, ско­ рость - по соответствию мощности резания и мощности станка.

Глубина резания определяется в основном припуском, оставленным на обработку. Если нет ограничений по точности и шероховатости обработки, то весь припуск срезают за один рабо­чий ход. Если технические условия не позволяют производить обработку за один рабочий ход, припуск разбивают на черновые и чистовые рабочие ходы. Черновые рабочие ходы выполняют с максимальной глубиной резания, а на чистовые оставляют минимальный припуск, обеспечивающий изготовле­ние детали с заданной шерохова­тостью и допуском.

Подача. Для повышения произво­дительности труда целесообразно ра­ботать с максимально возможной по­дачей. Величина подачи, как правило, ограничивается крутящим моментом станка, прочностью слабого звена ме­ханизма подачи, жесткостью обраба­тываемой детали, прочностью инстру­мента и требованиями шероховатости обрабатываемой поверхности. Вели­чины подач на практике обычно берут­ся из справочников.

Скорость резания. После определе­ния глубины резания и подачи опреде­ляется скорость резания.

Частота вращения шпинделя п (в об/мин) станка определяется по фор­муле

Расчетная частота вращения кор­ректируется с учетом действительной частоты вращения станка. По дейст­вительной частоте вращения подсчиты­вается действительная скорость реза­ния. Действительная частота враще­ния станка не должна отличаться от расчетной более чем на 5 %.

Проверка выбранных элементов режима резания

Проверка скорости. Проверка ско­рости производится по мощности станка. Может оказаться, что мощно­сти данного станка будет недостаточ­но для того, чтобы вести обработку с выбранными основными элементами режима резания. Расчетная мощность электродвигателя станкаN рез должна быть меньше или, по крайней мере, равна мощности электродвигателя станкаN ст , т. е.N рез N ст .

Если окажется, что мощности стан­ка не хватает, то принятую скорость необходимо уменьшить.

Проверка подачи. При черновой об­работке назначенная подача обяза­тельно проверяется по прочности де­талей механизма подачи станка. Опре­деляется осевая составляющая силы резанияР x при принятой подаче. Она должна быть меньше или, по крайней мере, равна наибольшей силе, допус­каемой прочностью механизма станкаP ст , которая указывается в паспорте станка завода-изготовителя, т. е. Р x Р ст . В случае еслиР x Р ст , необхо­димо подачу уменьшить.

§ 14. Сведения об инструментальных материалах. Требования, предъявляемые к ним

В конце прошлого. и в начале на­шего столетия процессы снятия струж­ки в металлообрабатывающей про­мышленности были на очень низком уровне развития.. Главным инструмен­тальным материалом была углероди­стая сталь, обладающая низкой износостойкостью и недостаточной способ­ностью противостоять тепловым на­грузкам. В процессе резания режущая кромка инструмента, изготовленная из инструментальной стали с содержани­ем углерода 1,2 % и закаленная до твердости 66 HRC, могла противо­стоять температурам 200-250 °С и до­пускать обработку со скоростями ре­зания 10-15 м/мин.

Несколько позднее появились ин­струментальные стали, легированные присадками хрома, вольфрама, мо­либдена, ванадия и др., которые поз­волили работать со скоростями 20- 25 м/мин. Резцы из углеродистых и ле­гированных сталей изготовляются цельными, из одного куска металла.

В первые два десятилетия двадца­того столетия была открыта быстроре­жущая сталь (1906), которая при со­держании в ней вольфрама около 19 % могла работать при температу­ре до 650 °С. Быстрорежущие стали допускают работу при скоростях реза­ния, в 2-3 раза превышающих ско­рости, возможные при использовании инструментов, изготовленных из инст­рументальных углеродистых сталей.

Дальнейшие эксперименты с мате­риалами, имеющими повышенное со­держание кобальта (Со), хрома (Сг) и вольфрама (W), привели к получе­нию сплава из этих металлов - стел­лита (1915) с температурным преде­лом 800 °С.

Эти два новых материала явились большим достижением в области об­работки резанием. Для обточки сталь­ного валика диаметром 100 мм и дли­ной 500 мм резцом из инструментальной стали требовалось 100 мин ма­шинного времени. Быстрорежущая сталь позволила сократить это время До 26 мин, а резцы из стеллита дове­ли его до 15 мин.

В 1920 г. впервые был получен металлокерамический твердый сплав. Этому открытию суждено было сыг­рать самую важную роль в развитии режущего инструмента. В 30-е годы металлокерамические твердые сплавы нашли широкое применение в металло­обработке. Уже первые инструменты из твердых сплавов позволили умень­шить время обработки образцового валика до 6 мин. Сейчас этот инструментальный материал занимает доми­нирующее положение в области реза­ния металлов.

Твердые сплавы сохраняют отно­сительно высокую твердость при на­греве до температуры 800-900 °С и позволяют вести обработку на высо­ких скоростях резания. При соответ­ствующих геометрических параметрах инструмента скорость резания дости­гает 500 м/мин при обработке сталей марки 45 и 2700 м/мин при обработке алюминия. Твердосплавным инстру­ментом можно обрабатывать детали из закаленной (HRC до 67) и труднообрабатываемых сталей.

Твердые сплавы выпускаются в ви­де пластинок, стандартизованных по форме и размерам, и сплошных или пустотелых столбиков. Важным собы­тием в инструментальной промыш­ленности было создание на основе принципа «неперетачиваемости» в се­редине 50-х годов инструментов с поворотными неперетачиваемыми пла­стинками.

При износе одной режущей кромки пластинка не снимается на переточку, а поворачивается, и новая режущая кромка продолжает резание. В 50-е годы появился минералокерамический материал. Его производство очень схо­же с процессом изготовления металлокерамических твердых сплавов. Осно­вой минералокерамических материа­лов является очень часто корунд (окись алюминия Аl 2 О 3). Минералокерамика не нашла, однако, широкого применения. Главной причиной тому является недостаточная прочность.

В 1969-1973 гг. появились пово­ротные пластинки с покрытием, сущ­ность которого заключается в том, что на прочную твердосплавную основу наносится слой износостойкого карби­да. Первые твердосплавные пластин­ки имели слой карбида титана тол­щиной 4-5 мкм. Применение покры­тия увеличило срок службы пластинок примерно на 300 %. Столь сущест­венное улучшение объясняется тем, что наносимый слой действует как диффузионный барьер, имеющий вы­сокую химическую стабильность при повышенных температурах.

В 1976 г. были созданы пластинки с двухслойным покрытием (типа GG015) с использованием окиси алю­миния. Наружный слой толщиной в 1 мкм делается из окиси алюминия, а промежуточный слой толщиной и 6мкм - из карбида титана.

Твердосплавные пластинки с двух­слойным, покрытием этого типа обладают отличными режущими свойствами при высоких, средних и низких режимах резания при обработке стали, чугуна при температурах до 1300 °С.

Особое место среди инструмёнтальных материалов занимают алмазы, яв­ляющиеся самыми твердыми, самыми износостойкими материалами, но хрупкими и самыми дорогими из всех материалов.

В нашей стране на основе кубического нитрида бора (вещества, состоящего из атомов азота и бора) создан новый сверхтвердый; синтетический материал эльбор, обладающий большой твердостью (до 9000 кгс/мм 2) и высокой теплостойкостью (1400 С). Эльбор химически инертен по отношению к углеродсодержащим материалам и более прочен, чем алмаз. Инструмент, изготовленный из эльбора, имеет высокую износостойкость. Эльбор в виде порошка используют для изготовления шлифовальных кругов и дру­гого абразивного инструмента, а эль­бор в виде столбиков - для изготовле­ния резцов.

На рис.19 развитие инструменталь­ных материалов изображено в форме

Рис. 19. Диаграмма развития инструментальных материалов

графика, на котором по оси абсцисс отложены годы, а по оси ординат - время, требовавшееся для обточки од­ного и того же валика в разные годы нынешнего столетия. Как видно из Графика, время обработки образцово­го валика сократилось со 100 мин в начале 1900-х г. до 1 мин в середине 1970."х г.

Требования, предъявляемые к ин­струментальным материалам. Режущие материалы должны удовлетворять следующим основным требованиям:

высокой твердости, значительно превосходящей твердость обрабатываемого металла;

высокой механической прочности - режущая поверхность инструмента должна выдерживать большое давление, без хрупкого разрушения и заметного пластичного деформирования;

высокой теплостойкости - материал должен сохранять при нагре­ве твердость, достаточную для осуществления процесса резания;

высокой износоустойчиво­сти - способности материала работать продолжительное время при вы­сокой температуре.

Для изготовления инструмента применяют следующие группы материалов, в различной степени (в разных условиях) удовлетворяющие этим требованиям: 1) инструментальные углеродистые стали; 2) инструментальные легированные стали; 3) быстрорежу­щие стали; 4) металлокерамические твердые сплавы; 5) минералокерамические материалы; 6) алмазы; 7) аб­разивные материалы; 8) конструк­ционные стали.

В табл. 2 приведены свойства ос­новных инструментальных материалов, а на диаграмме (рис. 20) - твер­дость их в зависимости от температу­ры резания.

Инструментальные углеродистые стали . Для изготовления режущих ин­струментов применяются углеродистые стали марок: У7, У8, ..., У13, У7А, У8А, ..., У13А. Буква У указывает, что сталь углеродистая; цифры-среднее содержание в процентах углерода;

2. Свойства основных инструментальных материалов

Инструментальный материал

материал

Твердость, HRA

Предел прочности на изгиб, Н/м 10 7

Предел прочности на сжатие Н/м 10 7

Теплопроводность, Вт/м*К

Теплостойкость. град

Коэффициент относительной допустимой скорости резания

Углеродистая сталь

Быстрорежу­щая сталь

Твердый сплав

Минералокерамика

Рис. 20. Зависимость твердости инструмен­тальных материалов от температуры

буква А показывает, что сталь повы­шенного качества с минимальным (не­большим) содержанием вредных при­месей. Марки и их состав даны в ГОСТ 1435-54.

Инструмент, изготовленный из уг­леродистой стали, позволяет вести об­работку при скоростях резания 10- 15 м/мин и при температурах резания 200-250°С.

Из углеродистых сталей изготовля­ют слесарные и режущие инструмен­ты, работающие на низких скоростях. Из стали У9А изготовляют зубила, из стали У13 - шаберы, напильники. Учитывая, что углеродистая сталь хо­рошо шлифуется, сталь У12А применя­ют для изготовления метчиков, необ­ходимых, для обработки точных резьб с мелким шагом.

Легированные инструментальные стали. Легированные инструменталь­ные стали отличаются от углеродистых наличием в них легирующих элемен­тов - хрома, вольфрама, молибдена, ванадия, марганца, кремния. Стали с такими добавками называются леги­рованными инструментальными сталя­ми. Легированные стали выдерживают температуру нагрева 250-300°С и дают возможность работать со скоростью резания 20-25 м/мин. Наибольшее распространение получили марки ХВ5, ХВГ, 9ХС, ХГ. Из стали ХВ5 изготовляются развертки и фасонные резцы. Из стали ХВГ изготовляются протяжки крупных размеров Сталь 9ХС отличается высокой карбидной однородностью. Из нее изготовляются инструменты с тонкими режущими элементами - сверла, раз вертки, метчики, плашки, концевые фрезы небольших диаметров. Химический состав легированных сталей группы и марки даны в ГОСТ 5950- 63.

Быстрорежущие стали. Быстрорежущие инструментальные стали отличаются от легированных большим со держанием в них вольфрама, ванадия хрома, молибдена. Быстрорежущие стали обладают более высокой твердостью, прочностью, износостойкость и теплостойкостью. Они не теряют своих режущих свойств при температур 550-600 °С и позволяют работать со скоростью резания в 2,5-3 раза выше, чем инструменты, изготовленные из углеродистых сталей, и в 1,5 раз, выше, чем инструменты, изготовленные из легированных сталей. Быстро режущие стали подразделяются н, стали нормальной производительности (Р18, Р9 и др.) и стали повышенной производительности (Р18Ф2К5, Р9Ф2К5 и др.). Наибольшее распространение получили стали Р9 и Р18. Твердость этих сталей - HRC 62-64 Быстрорежущие стали нормальной производительности позволяют работать со скоростью резания до 60 м/мин, а повышенной производительности - до 100 м/мин. Из быстрорежущих сталей изготовляются инструменты мно­гих наименований: резцы, сверла, зен­керы, развертки, цилиндрические фрезы, червячные фрезы, долбяки, протяжки и др.

Твердые сплавы. Для изготовления режущей части инструмента применя­ют металлокерамические твердые сплавы. Металлокерамические спла­вы получают спеканием порошков карбидов тугоплавких металлов: вольфрама, титана, тантала и связываю­щего их кобальта. Твердые сплавы об­ладают высокой теплостойкостью (до 1000°С) и износостойкостью. Они поз­воляют работать со скоростями реза­ния в 3-4 раза большими по сравне­нию с инструментами из быстрорежу­щей стали. Твердые сплавы выпуска­ются в виде пластинок определенной формы и стандартных размеров (ГОСТ 2209-69).

Область применения твердых сплавов указана в ГОСТ 3882-74. Из твердых сплавов изготовляются рез­цы различных типов, сверла, зенкеры, развертки, торцовые фрезы, червяч­ные фрезы, метчики и др.

Минералокерамические материалы. Для изготовления режущей части ин­струмента применяют минералокерамические материалы (микролит, терликорунд). Микролит, так же как и твердые сплавы, получают спеканием. Пластинки минеральной керамики об­ладают высокой твердостью (HRA=91-93), высокой теплостойкостью (до 1200 °С) и износостойкостью. Не­достатками керамических материалов являются хрупкость и пониженная прочность. Наиболее высокими режу­щими свойствами обладает материал марки ЦН-332.

Керамические материалы применя­ют главным образом при получистовом и чистовом точении и при чистовом и тонком фрезеровании торцовыми фре­зами с неперетачиваемыми пластин­ками.

Алмаз . Алмаз является самым твердым из всех инструментальных материалов. Твердость алмаза в 7 раз превосходит твердость карбида вольф­рама и в 3,5 раза - карбида титана. Алмаз обладает высокой теплопровод­ностью и высокой износостойкостью. Недостатками алмаза являются хруп­кость, низкая критическая температу­ра (700-750 °С) и дороговизна.

Алмазы бывают естественные и синтетические. В природе алмазы встречаются в виде кристаллов и сросшихся кристаллических зерен и кристалликов. Искусственные (синтетические) алмазы получают из обыч­ного графита воздействием на него вы­соких температур и давления. Синтетические алмазы типа «Карбонадо», «Баллас» выпускаются в виде кристал­лов и порошков. Шлифовальные круги из синтетических алмазов применяются для заточки и доводки твердосплав­ных режущих инструментов.

Алмазом оснащаются резцы, тор­цовые фрезы и перовые сверла. В ре­жущих инструментах применяются кристаллы массой от 931 до 0,75 кара­та (1 карат равен 0,2 г).

Кубический нитрид бора. Отечест­венная промышленность выпускает синтетические материалы того же на­значения, что и искусственные алмазы. К ним относится в первую очередь кубический нитрид бора. Он представ­ляет собой химическое соединение бо­ра и азота. Технология его изготовле­ния аналогична с производством син­тетических алмазов. Исходным мате­риалом является нитрид бора, свойст­ва которого сходны со свойствами гра­фита. Промышленные марки кубичес­кого нитрида бора «эльбор Р», «компо­зит», «кубинит» обладают высокой твердостью, высокой теплоемкостью и высокой износостойкостью.

Марки типа «эльбор Р» обладают свойствами, значительно превосходя­щими минеральную керамику и твер­дые сплавы. Резцы из эльбора приме­няют для тонкого чистового точения закаленных сталей (с твердостью HRC45-60), хромоникелевых чугунов. Торцовые фрезы из эльбора поз­воляют производить чистовое фрезеро­вание закаленных сталей и получать шероховатость поверхности доRa 1,25 мкм.

В последнее время освоено произ­водство крупных поликристаллических образований нитрида бора с диамет­ром 3-4 мм и длиной 5-6 мм, обла­дающих высокой прочностью. Осна­щение такими поликристаллами рез­цов и торцовых фрез позволяет обра­батывать закаленные стали с твер­достью HRC до 50 и высокопрочных чугунов с параметрами шероховато­сти до Ra 0,50 мкм.

Конструкционные стали. Для изго­товления державок, корпусов хвостови­ков и деталей для клеймения состав­ного инструмента применяют конструк­ционные стали: Ст5» Стб, стали 40, 45, 50 и др.

Включайся в дискуссию
Читайте также
Сценарий досуга старшей-подготовительной группы «Учимся мечтать и фантазировать
Туризм – хобби или профессия Идеальное резюме турагента
Разница между участником и учредителем Учредителями и участниками общества не могут быть