Подпишись и читай
самые интересные
статьи первым!

Hno3 степень окисления элементов. Окислительно-восстановительные реакции

Химические вещества можно разделить на типичные окислители , типичные восстановители , и вещества, которые могут проявлять и окислительные, и восстановительные свойства . Некоторые вещества практически не проявляют окислительно-восстановительную активность.

К типичным окислителям относят:

  • простые вещества-неметаллы с наиболее сильными окислительными свойствами (фтор F 2 , кислород O 2 , хлор Cl 2);
  • ионы металлов или неметаллов с высокими положительными (как правило, высшими) степенями окисления : кислоты (HN +5 O 3 , HCl +7 O 4), соли (KN +5 O 3 , KMn +7 O 4), оксиды (S +6 O 3 , Cr +6 O 3)
  • соединения, содержащие некоторые катионы металлов , имеющих высокие степени окисления : Pb 4+ , Fe 3+ , Au 3+ и др.

Типичные восстановители – это, как правило:

  • простые вещества-металлы (восстановительные способности металлов определяются рядом электрохимической активности);
  • сложные вещества, в составе которых есть атомы или ионы неметаллов с отрицательной (как правило, низшей) степенью окисления : бинарные водородные соединения (H 2 S, HBr), соли бескислородных кислот (K 2 S, NaI);
  • некоторые соединения, содержащие катионы с минимальной положительной степенью окисления (Sn 2+ , Fe 2+ , Cr 2+), которые, отдавая электроны, могут повышать свою степень окисления ;
  • соединения, содержащие сложные ионы, состоящие из неметаллов с промежуточной положительной степенью окисления (S +4 O 3) 2– , (НР +3 O 3) 2– , в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления .

Большинство остальных веществ может проявлять как окислительные, так и восстановительные свойства .

Типичные окислители и восстановители приведены в таблице.

В лабораторной практике наиболее часто используются следующие окислители :

    перманганат калия (KMnO 4);

    дихромат калия (K 2 Cr 2 O 7);

    азотная кислота (HNO 3);

    концентрированная серная кислота (H 2 SO 4);

    пероксид водорода (H 2 O 2);

    оксиды марганца (IV) и свинца (IV) (MnO 2 , PbO 2);

    расплавленный нитрат калия (KNO 3) и расплавы некоторых других нитратов.

К восстановителям , которые применяются в лабораторной практике относятся:

  • магний (Mg), алюминий (Al), цинк (Zn) и другие активные металлы;
  • водород (Н 2) и углерод (С);
  • иодид калия (KI);
  • сульфид натрия (Na 2 S) и сероводород (H 2 S);
  • сульфит натрия (Na 2 SO 3);
  • хлорид олова (SnCl 2).

Классификация окислительно-восстановительных реакций

Окислительно-восстановительные реакции обычно разделяют на четыре типа: межмолекулярные, внутримолекулярные, реакции диспропорционирования (самоокисления-самовосстановления), и реакции контрдиспропорционирования .

Межмолекулярные реакции протекают с изменением степени окисления разных элементов из разных реагентов . При этом образуются разные продукты окисления и восстановления .

2Al 0 + Fe +3 2 O 3 → Al +3 2 O 3 + 2Fe 0 ,

C 0 + 4HN +5 O 3(конц) = C +4 O 2 + 4N +4 O 2 + 2H 2 O.

Внутримолекулярные реакции – это такие реакции, в которых разные элементы из одного реагента переходят в разные продукты, например :

(N -3 H 4) 2 Cr +6 2 O 7 → N 2 0 + Cr +3 2 O 3 + 4 H 2 O,

2 NaN +5 O -2 3 → 2 NaN +3 O 2 + O 0 2 .

Реакции диспропорционирования (самоокисления-самовосстановления) – это такие реакции, в которых окислитель и восстановитель – один и тот же элемент одного реагента, который при этом переходит в разные продукты :

3Br 2 + 6 KOH → 5KBr + KBrO 3 + 3 H 2 O,

Репропорционирование (конпропорционирование, контрдиспропорционирование ) – это реакции, в которых окислитель и восстановитель – это один и тот же элемент , которыйиз разных реагентов переходит в один продукт . Реакция, обратная диспропорционированию.

2H 2 S -2 + S +4 O 2 = 3S + 2H 2 O

Основные правила составления окислительно-восстановительных реакций

Окислительно-восстановительные реакции сопровождаются процессами окисления и восстановления:

Окисление — это процесс отдачи электронов восстановителем.

Восстановление — это процесс присоединения электронов окислителем.

Окислитель восстанавливается , а восстановитель окисляется .

В окислительно-восстановительных реакциях соблюдается электронный баланс : количество электронов, которые отдает восстановитель, равно количеству электронов, которые получает окислитель. Если баланс составлен неверно, составить сложные ОВР у вас не получится.

Используется несколько методов составления окислительно-восстановительных реакций (ОВР): метод электронного баланса, метод электронно-ионного баланса (метод полуреакций) и другие.

Рассмотрим подробно метод электронного баланса .

«Опознать» ОВР довольно легко — достаточно расставить степени окисления во всех соединениях и определить, что атомы меняют степень окисления:

K + 2 S -2 + 2K + Mn +7 O -2 4 = 2K + 2 Mn +6 O -2 4 + S 0

Выписываем отдельно атомы элементов, меняющих степень окисления, в состоянии ДО реакции и ПОСЛЕ реакции.

Степень окисления меняют атомы марганца и серы:

S -2 -2e = S 0

Mn +7 + 1e = Mn +6

Марганец поглощает 1 электрон, сера отдает 2 электрона. При этом необходимо, чтобы соблюдался электронный баланс . Следовательно, необходимо удвоить число атомов марганца, а число атомов серы оставить без изменения. Балансовые коэффициенты указываем и перед реагентами, и перед продуктами!

Схема составления уравнений ОВР методом электронного баланса:

Внимание! В реакции может быть несколько окислителей или восстановителей. Баланс необходимо составить так, чтобы ОБЩЕЕ число отданных и полученных электронов было одинаковым.

Общие закономерности протекания окислительно-восстановительных реакций

Продукты окислительно-восстановительных реакций зачастую зависят от условий проведения процесса . Рассмотрим основные факторы, влияющие на протекание окислительно-восстановительных реакций .

Самый очевидный фактор, определяющий — среда раствора реакции — . Как правило (но не обязательно), вещество, определяющее среду, указано среди реагентов. Возможны такие варианты:

  • окислительная активность усиливается в более кислой среде и окислитель восстанавливается глубже (например, перманганат калия, KMnO 4 , где Mn +7 в кислой среде восстанавливается до Mn +2 , а в щелочной — до Mn +6);
  • окислительная активность усиливается в более щелочной среде , и окислитель восстанавливается глубже (например, нитрат калия KNO 3 , где N +5 при взаимодействии с восстановителем в щелочной среде восстанавливается до N -3);
  • либо окислитель практически не подвержен изменениям среды.

Среда протекания реакции позволяет определить состав и форму существования остальных продуктов ОВР. Основной принцип — продукты образуются такие, которые не взаимодействуют с реагентами!

Обратите внимание! Е сли среда раствора кислая, то среди продуктов реакции не могут присутствовать основания и основные оксиды, т.к. они взаимодействуют с кислотой. И, наоборот, в щелочной среде исключено образование кислоты и кислотного оксида. Это одна из наиболее частых, и наиболее грубых ошибок.

Также на направление протекания ОВР влияет природа реагирующих веществ. Например , при взаимодействии азотной кислоты HNO 3 с восстановителями наблюдается закономерность — чем больше активность восстановителя, тем больше восстановливается азот N +5 .

При увеличении температуры большинство ОВР, как правило, проходят более интенсивно и более глубоко.

В гетерогенных реакциях на состав продуктов зачастую влияет степень измельчения твердого вещества . Например, порошковый цинк с азотной кислотой образует одни продукты, а гранулированный — совершенно другие. Чем больше степень измельчения реагента, тем больше его активность, как правило.

Рассмотрим наиболее типичные лабораторные окислители.

Основные схемы окислительно-восстановительных реакций

Схема восстановления перманганатов

В составе перманганатов есть мощный окислитель — марганец в степени окисления +7. Соли марганца +7 окрашивают раствор в фиолетовый цвет.

Перманганаты, в зависимости от среды реакционного раствора, восстанавливаются по-разному.

В кислой среде восстановление происходит более глубоко, до Mn 2+ . Оксид марганца в степени окисления +2 проявляет основные свойства, поэтому в кислой среде образуется соль. Соли марганца +2 бесцветны . В нейтральном растворе марганец восстанавливается до степени окисления +4 , с образованием амфотерного оксида MnO 2 коричневого осадка, нерастворимого в кислотах и щелочах. В щелочной среде марганец восстанавливается минимально — до ближайшей степени окисления +6 . Соединения марганца +6 проявляют кислотные свойства, в щелочной среде образуют соли — манганаты . Манганаты придают раствору зеленую окраску .

Рассмотрим взаимодействие перманганата калия KMnO 4 с сульфидом калия в кислой, нейтральной и щелочной средах. В этих реакциях продуктом окисления сульфид-иона является S 0 .

5 K 2 S + 2 KMnO 4 + 8 H 2 SO 4 = 5 S + 2 MnSO 4 + 6 K 2 SO 4 + 8 H 2 O,

3 K 2 S + 2 KMnO 4 + 4 H 2 O = 2 MnO 2 ↓ + 3 S↓ + 8 KOH,

Распространенной ошибкой в этой реакции является указание на взаимодействие серы и щелочи в продуктах реакции. Однако, сера взаимодействует с щелочью в довольно жестких условиях (повышенная температура), что не соответствует условиям этой реакции. При обычных условиях правильно будет указывать именно молекулярную серу и щелочь отдельно, а не продукты их взаимодействия.

K 2 S + 2 KMnO 4 –(KOH)= 2 K 2 MnO 4 + S↓

При составлении этой реакции также возникают трудности. Дело в том, что в данном случае написание молекулы среды (КОН или другая щелочь) в реагентах не требуется для уравнивания реакции. Щелочь принимает участие в реакции, и определяет продукт восстановления перманганата калия, но реагенты и продукты уравниваются и без ее участия. Этот, казалось бы, парадокс легко разрешим, если вспомнить, что химическая реакция — это всего лишь условная запись, которая не указывает на каждый происходящий процесс, а всего лишь является отображением суммы всех процессов. Как определить это самостоятельно? Если действовать по классической схеме — баланс-балансовые коэффициенты-уравнивание металла, то вы увидите, что металлы уравниваются балансовыми коэффициентами, и наличие щелочи в левой части уравнения реакции будет лишним.

Перманганаты окисляют:

  • неметаллы с отрицательной степенью окисления до простых веществ (со степенью окисления 0), исключения фосфор, мышьяк — до +5 ;
  • неметаллы с промежуточной степенью окисления до высшей степени окисления;
  • активные металлы стабильной положительной степенью окисления металла.

KMnO 4 + неМе (низшая с.о.) = неМе 0 + другие продукты

KMnO 4 + неМе (промежуточная с.о.) = неМе(высшая с.о.) + др. продукты

KMnO 4 + Ме 0 = Ме (стабильная с.о.) + др. продукты

KMnO 4 + P -3 , As -3 = P +5 , As +5 + др. продукты

Схема восстановления хроматов/бихроматов

Особенностью хрома с валентностью VI является то, что он образует 2 типа солей в водных растворах: хроматы и бихроматы, в зависимости от среды раствора. Хроматы активных металлов (например, K 2 CrO 4) — это соли, которые устойчивы в щелочной среде. Дихроматы (бихроматы) активных металлов (например, K 2 Cr 2 O 7) — соли, устойчивые в кислой среде .

Восстанавливаются соединения хрома (VI) до соединений хрома (III) . Соединения хрома Cr +3 — амфотерные, и в зависимости от среды раствора они существуют в растворе в различных формах: в кислой среде в виде солей (амфотерные соединения при взаимодействии с кислотами образуют соли), в нейтральной среде — нерастворимый амфотерный гидроксид хрома (III) Cr(OH) 3 , и в щелочной среде соединения хрома (III) образуют комплексную соль, например, гексагидроксохромат (III) калия K 3 .

Соединения хрома VI окисляют:

  • неметаллы в отрицательной степени окисления до простых веществ (со степенью окисления 0), исключения фосфор, мышьяк – до +5 ;
  • неметаллы в промежуточной степени окисления до высшей степени окисления;
  • активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.

Хромат/бихромат + неМе (отрицательная с.о.) = неМе 0 + другие продукты

Хромат/бихромат + неМе (промежуточная положительная с.о.) = неМе(высшая с.о.) + др. продукты

Хромат/бихромат + Ме 0 = Ме (стабильная с.о.) + др. продукты

Хромат/бихромат + P, As (отрицательная с.о.) = P, As +5 + другие продукты

Разложение нитратов

Соли-нитраты содержат азот в степени окисления +5 — сильный окислитель . Такой азот может окислять кислород (О -2). Это происходит при нагревании нитратов. При этом в большинстве случаев кислород окисляется до степени окисления 0, т.е. до молекулярного кислорода O 2 .

В зависимости от типа металла, образующего соль, при термическом (температурном) разложении нитратов образуются различные продукты: если металл активный (в ряду электрохимической активности находятся до магния ), то азот восстанавливается до степени окисления +3, и при разложении образуется соли-нитриты и молекулярный кислород .

Например :

2NaNO 3 → 2NaNO 2 + O 2 .

Активные металлы в природе встречаются в виде солей (KCl, NaCl).

Если металл в ряду электрохимической активности находится правее магния и левее меди (включая магний и медь) , то при разложении образуется оксид металла в устойчивой степени окисления, оксид азота (IV) (бурый газ) и кислород . Оксид металла образует также при разложении нитрат лития .

Например , разложение нитрата цинка :

2Zn(NO 3) 2 → 2ZnО + 4NO 2 + O 2 .

Металлы средней активности чаще всего в природе встречаются в виде оксидов (Fe 2 O 3 , Al 2 O 3 и др.).

Ионы металлов , расположенных в ряду электрохимической активности правее меди являются сильными окислителями. При разложении нитратов они, как и N +5 , участвуют в окислении кислорода, и восстанавливаются до простых веществ, т.е. образуется металл и выделяются газы — оксид азота (IV) и кислород .

Например , разложение нитрата серебра :

2AgNO 3 → 2Ag + 2NO 2 + O 2 .

Неактивные металлы в природе встречаются в виде простых веществ.

Некоторые исключения!

Разложение нитрата аммония :

В молекуле нитрата аммония есть и окислитель, и восстановитель: азот в степени окисления -3 проявляет только восстановительные свойства, азот в степени окисления +5 — только окислительные.

При нагревании нитрат аммония разлагается . При температуре до 270 о С образуется оксид азота (I) («веселящий газ») и вода:

NH 4 NO 3 → N 2 O + 2H 2 O

Это пример реакции контрдиспропорционирования .

Результирующая степень окиcления азота — среднее арифметическое степени окисления атомов азота в исходной молекуле.

При более высокой температуре оксид азота (I) разлагается на простые вещества — азот и кислород :

2NH 4 NO 3 → 2N 2 + O 2 + 4H 2 O

При разложении нитрита аммония NH 4 NO 2 также происходит контрдиспропорционирование.

Результирующая степень окисления азота также равна среднему арифметическому степеней окисления исходных атомов азота — окислителя N +3 и восстановителя N -3

NH 4 NO 2 → N 2 + 2H 2 O

Термическое разложение нитрата марганца (II) сопровождается окислением металла:

Mn(NO 3) 2 = MnO 2 + 2NO 2

Нитрат железа (II) при низких температурах разлагается до оксида железа (II), при нагревании железо окисляется до степени окисления +3:

2Fe(NO 3) 2 → 2FeO + 4NO 2 + O 2 при 60°C
4Fe(NO 3) 2 → 2Fe 2 O 3 + 8NO 2 + O 2 при >60°C

Нитрат никеля (II) разлагается до нитрита при нагревании.

Окислительные свойства азотной кислоты

Азотная кислота HNO 3 при взаимодействии с металлами практически никогда не образует водород , в отличие от большинства минеральных кислот.

Это связано с тем, что в составе кислоты есть очень сильный окислитель — азот в степени окисления +5. При взаимодействии с восстановителями — металлами образуются различные продукты восстановления азота.

Азотная кислота + металл = соль металла + продукт восстановления азота + H 2 O

Азотная кислота при восстановлении может переходить в оксид азота (IV) NO 2 (N +4); оксид азота (II) NO (N +2); оксид азота (I) N 2 O («веселящий газ»); молекулярный азот N 2 ; нитрат аммония NH 4 NO 3 . Как правило, образуется смесь продуктов с преобладанием одного из них. Азот восстанавливается при этом до степеней окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты . При этом работает правило: чем меньше концентрация кислоты и выше активность металла, тем больше электронов получает азот, и тем более восстановленные продукты образуются .

Некоторые закономерности позволят верно определять основной продукт восстановления металлами азотной кислоты в реакции:

  • при действии очень разбавленной азотной кислоты на металлы образуется, как правило, нитрат аммония NH 4 NO 3 ;

Например , взаимодействие цинка с очень разбавленной азотной кислотой:

4Zn + 10HNO 3 = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

  • концентрированная азотная кислота на холоде пассивирует некоторые металлы — хром Cr, алюминий Al и железо Fe . При нагревании или разбавлении раствора реакция идет;

пассивация металлов — это перевод поверхности металла в неактивное состояние за счет образования на поверхности металла тонких слоев инертных соединений, в данном случае преимущественно оксидов металлов, которые не реагируют с концентрированной азотной кислотой

  • азотная кислота не реагирует с металлами платиновой подгруппы золотом Au, платиной Pt, и палладием Pd;
  • при взаимодействии концентрированной кислоты с неактивными металлами и металлами средней активности азотная кислота восстанавливается до оксида азота (IV) NO 2 ;

Например , окисление меди концентрированной азотной кислотой:

Cu+ 4HNO 3 = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

  • при взаимодействии концентрированной азотной кислоты с активными металлами образуется оксид азота (I) N 2 O ;

Например , окисление натрия концентрированной азотной кислотой :

Na+ 10HNO 3 = 8NaNO 3 + N 2 O + 5H 2 O

  • при взаимодействии разбавленной азотной кислоты с неактивными металлами (в ряду активности правее водорода) кислота восстанавливается до оксида азота (II) NO ;
  • при взаимодействии разбавленной азотной кислоты с металлами средней активности образуется либо оксид азота (II) NO, либо оксид азота N 2 O, либо молекулярный азот N 2 — в зависимости от дополнительных факторов (активность металла, степень измельчения металла, степень разбавления кислоты, температура).
  • при взаимодействии разбавленной азотной кислоты с активными металлами образуется молекулярный азот N 2 .

Для приближенного определения продуктов восстановления азотной кислоты при взаимодействии с разными металлами я предлагаю воспользоваться принципом маятника. Основные факторы, смещающие положение маятника: концентрация кислоты и активность металла. Для упрощения используем 3 типа концентраций кислоты: концентрированная (больше 30%), разбавленная (30% или меньше), очень разбавленная (меньше 5%). Металлы по активности разделим на активные (до алюминия), средней активности (от алюминия до водорода) и неактивные (после водорода). Продукты восстановления азотной кислоты располагаем в порядке убывания степени окисления:

NO 2 ; NO; N 2 O; N 2 ; NH 4 NO 3

Чем активнее металл, тем больше мы смещаемся вправо. Чем больше концентрация или меньше степень разбавления кислоты, тем больше мы смещаемся влево.

Например , взаимодействуют концентрированная кислота и неактивный металл медь Cu. Следовательно, смещаемся в крайнее левое положение, образуется оксид азота (IV), нитрат меди и вода.

Взаимодействие металлов с серной кислотой

Разбавленная серная кислота взаимодействует с металлами, как обычная минеральная кислота. Т.е. взаимодействует с металлами, которые расположены в ряду электрохимических напряжений до водорода . Окислителем здесь выступают ионы H + , которые восстанавливаются до молекулярного водорода H 2 . При этом металлы окисляются, как правило, до минимальной степени окисления.

Например :

Fe + H 2 SO 4(разб) = FeSO 4 + H 2

взаимодействует с металлами, стоящими в ряду напряжений как до, так и после водорода.

H 2 SO 4 (конц) + металл = соль металла + продукт восстановления серы (SO 2 , S, H 2 S) + вода

При взаимодействии концентрированной серной кислоты с металлами образуются соль металла (в устойчивой степени окисления), вода и продукт восстановления серы — сернистый газ S +4 O 2 , молекулярная сера S либо сероводород H 2 S -2 , в зависимости от степени концентрации, активности металла, степени его измельчение, температуры и т.д. При взаимодействии концентрированной серной кислоты с металлами молекулярный водород не образуется!

Основные принципы взаимодействия концентрированной серной кислоты с металлами:

1. Концентрированная серная кислота пассивирует алюминий, хром, железо при комнатной температуре, либо на холоду;

2. Концентрированная серная кислота не взаимодействует с золотом, платиной и палладием ;

3. С неактивными металлами концентированная серная кислота восстанавливается до оксида серы (IV).

Например , медь окисляется концентрированной серной кислотой :

Cu 0 + 2H 2 S +6 O 4(конц) = Cu +2 SO 4 + S +4 O 2 + 2H 2 O

4. При взаимодействии с активными металлами и цинком концентрированная серная кислота образует серу S либо сероводород H 2 S 2- (в зависимости от температуры, степени измельчения и активности металла).

Например , взаимодействие концентрированной серной кислоты с цинком :

8Na 0 + 5H 2 S +6 O 4(конц) → 4Na 2 + SO 4 + H 2 S — 2 + 4H 2 O

Пероксид водорода

Пероксид водорода H 2 O 2 содержит кислород в степени окисления -1. Такой кислород может и повышать, и понижать степень окисления. Таким образом, пероксид водорода проявляет и окислительные, и восстановительные свойства.

При взаимодействии с восстановителями пероксид водорода проявляет свойства окислителя, и восстанавливается до степени окисления -2. Как правило, продуктом восстановления пероксида водорода является вода или гидроксид-ион, в зависимости от условий проведения реакции. Например:

S +4 O 2 + H 2 O 2 -1 → H 2 S +6 O 4 -2

При взаимодействии с окислителями перекись окисляется до молекулярного кислорода (степень окисления 0): O 2 . Например :

2KMn +7 O 4 + 5H 2 O 2 -1 + 3H 2 SO 4 → 5O 2 0 + 2Mn +2 SO 4 + K 2 SO 4 + 8H 2 O

При обычных условиях азотная кислота представляет собой бесцветную жидкость (плотность 1,52 г/см 3), кипящую при 82,6 o C, а при температуре (-41,6 o C) затвердевающую в прозрачную кристаллическую массу. Брутто-формула - HNO 3 . Молярная масса - 93 г/моль. Строение молекулы азотной кислоты приведено на рис. 1.

Азотная кислота смешивается с водой в любых соотношениях. Является сильным электролитом, т.е. в водном растворе практически полностью диссоциирует на ионы. В ОВР проявляет себя в роли окислителя.

Рис. 1. Строение молекулы азотной кислоты с указанием валентных углов между связями и длин химических связей.

HNO3, степени окисления элементов в ней

Чтобы определить степени окисления элементов, входящих в состав азотной кислоты, сначала необходимо разобраться с тем, для каких элементов эта величина точно известна.

Степени окисления водорода и кислорода в составе неорганических кислот всегда равны (+1) и (-2) соответственно. Для нахождения степени окисления азота примем её значение за «х» и определим его при помощи уравнения электронейтральности:

(+1) + х + 3×(-2) = 0;

1 + х — 6 = 0;

Значит степень окисления азота в азотной кислоте равна (+5):

H +1 N +5 O -2 3 .

Примеры решения задач

ПРИМЕР 1

А. H2S Б.SO3 В.H2SO3

2. Степень окисления углерода в карбонате кальция равна:
А. -4 Б.+2 В.+4

3. Вещество, в котором степень окисления фосфора равна нулю:
А. P4 Б.PH3 В.P2O5

4.Окислительно-восстановительной является реакция, уравнение которой:
А.2Al(OH)3=Al2O3+3H2O Б.H2+Cl2=2HCl В.NaOH+HNO3=NaNO3+H2O

5. Окислителем в химической реакции, CuO+H2=Cu+H2O является:
А.H20 Б.Cu2+ В.O2- Г.Cu0

6. Степень окисления хлора уменьшается в ряду:
А.Cl2– HCl–HClO Б.NaCl–Cl2–KClO3 В.HClO4–NaClO2–BaCl2

7.Процесс перехода, схема которого N-3→N+2 является:
А. Восстановлением
Б.Окислением
В. Не окислительно-восстановительным процессом.

8. В уравнении реакции S+O2→SO2 число электронов, отданных окислителем, равно:
А. 2 Б.4 В.6

9. Фосфор в степени окисления 0 может являться:
А.Только восстановителем
Б.Только окислителем
В.Окислителем и восстановителем

10.Простое вещество – неметалл, обладающее наиболее сильными окислительными свойствами:
А. Br2
Б. Cl2
В. F2

Часть Б.
11. Составьте формулы оксида азота (III) и оксида азота (V)

12. Расставите коэффициенты в схеме реакции методом электронного баланса:
Ca + O2 = CaO
Назовите процессы окисления и восстановления, и укажите окислитель и восстановитель.

13. Расположите формулы химических соединений: CH4, CO2, CO – в порядке уменьшения степеней окисления атомов углерода.

14. По схеме Сu+2 + 2ē → Cu0 составьте уравнение химической реакции и рассмотрите её с точки зрения ОВР.

15. Дополните фразу: «Восстановление – это....»

1) допишите уравнения реакций,укажите степени окисления элементов и расставьте коэффициенты методом электронного баланса: Са+О2 ->, N2+H2 ->. 2)

определите степень окисления каждого элемента,расставьте коэффициенты методом электронного баланса: KCIO3+S -> KCI+SO2. 3) определите пожалуйста степень окисления серы в следующих соединениях: H2SO4, SO2, H2S, SO2, H2SO3. 4 в сторону атомов какого химического элемента смещаются общие электронные пары в молекулах следующих соединений: H2O, HI, PCI3, H3N, H2S, CO2? дайте пожалуйста обоснованный ответ! 5) скажите, изменяются ли степени окисления атомов при образовании воды из водорода и кислорода? 6) напишите уравнения электролитической диссоциации: нитрата меди, соляной кислоты, сульфата алюминия, гидроксида бария, сульфата цинка. 7) пожалуйста напишите молекулярные и ионные уравнения реакций между растворами: гидроксида лития и азотной кислоты, нитрата меди и гидроксида натрия, карбоната калия и фосфорной кислоты. 8) при взаимодействии растворов каких веществ одним из продуктов реакции является вода? K2CO3 и HCI: Ca(OH)2 и HNO3: NaOH и H2SO4: NaNO3 и H2SO4? напишите пожалуйста уравнения реакций в молекулярной и ионной формулах. 9) какие из перечисленных солей подвергаются гидролизу при растворении в воде: хлорид алюминия, сульфид калия, хлорид натрия? Напишите уравнения, отвечающие гидролизу.

Рассмотрим степени окисления всех элементов в азотной кислоте. Кислород в сложных соединениях почти всегда находится в степени окисления -2 (за исключением пероксидов, надоксидов, фторида кислорода и т.д.). Атом водорода, который обязательно входит в состав протонных кислот, имеет степень окисления +1. Чтобы определить степень окисления атома азота, необходимо решить простое уравнение. Пусть х - степень окисления азота, тогда, по принципу электронейтральности молекулы, 1 + х + 3 * (-2) = 0, откуда х = 5. Ответ: степени окисления элементов в азотной кислоте равны +1, +5, -2 для водорода, азота и кислорода соответственно.

В данном задании вам необходимо определить степень окисления следующего соединения:

Определите последовательность выполнения данного задания

  • Запишите что означает степень окисления;
  • Определите степень окисления азотной кислоты;
  • Запишите описание.

Степень окисления в данном соединении следующая

Степень окисления - вспомогательная условная величина для записи процессов окисления, восстановления и окислительно - восстановительных реакций. Она указывает на состояние окисления отдельного атома молекулы и представляет собой лишь удобный метод учёта переноса электронов: она не является истинным зарядом атома в молекуле.

Представления о степени окисления элементов положены в основу и используются при классификации химических веществ, описании их свойств, составлении формул соединений и их международных названий (номенклатуры). Но особенно широко оно применяется при изучении окислительно-восстановительных реакций.

Понятие степень окисления часто используют в неорганической химии вместо понятия валентность.

Степень окисления указывается сверху над символом элемента. В отличие от указания заряда иона, при указании степени окисления первым ставится знак, а потом численное значение, а не наоборот.

Степень окисления (в отличие от валентности) может иметь нулевое, отрицательное и положительное значения, которые обычно ставятся над символом элемента сверху.

Степень окисления азотной кислоты следующая:

HNO3 - степень окисления водорода + 1, степень окисления азота + 5, степень окисления кислорода - 2.

Включайся в дискуссию
Читайте также
Сценарий досуга старшей-подготовительной группы «Учимся мечтать и фантазировать
Туризм – хобби или профессия Идеальное резюме турагента
Разница между участником и учредителем Учредителями и участниками общества не могут быть